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Quote

 

 

John Tukey: 

 

“As I am sure almost every geophysicist knows, distributions of actual 

errors and fluctuations have much more straggling extreme values than 

would correspond to the magic bell-shaped distribution of Gauss and 

Laplace.” 
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(1) Motivation

 
 
 

 Uncertainty Quantification 
 
-- Tails of distributions 
  
 Most important for impacts 
 
 

 “Risk, Decisions and Impacts” 
 
-- SAMSI theme (erstwhile?) 
  
 “Risk of high impact, low probability events” 

 “Application of UQ to climate risk and decision analysis” 

  



 Extreme Value Theory 
 

-- Natural framework for statistical modeling of such events 
 

 

 Damage Functions 
 

-- Convert intensity of extreme climate event to economic damage 

 (Functional form?) 

 

 Penultimate Approximations 
 

-- Refinement to Extreme Value Theory 
 

-- Use to relate tail behavior of damage to that of underlying climate 

variable  



(2) Ultimate Extreme Value Theory

 
 

 “Ultimate” Extreme Value Theory 
 

 X1, X2, . . ., Xn independent with common cdf F 

 

-- Suppose that there exist constants an > 0 and bn such that 

 

Pr{[max(X1, X2, . . ., Xn) – bn] / an ≤ x} → G(x)  as n → ∞ 

 
Then G must a generalized extreme value (GEV) cdf; that is, 
 

G(x; μ, σ, ξ) = exp {−[1 + ξ (x − μ)/σ]
−1/ξ 

} 

 

 μ location, σ > 0 scale, ξ shape parameter 



 



 Excesses Over High Threshold 
 

-- X random variable 
 
Y = X − u “excess” over high threshold u, conditional on X > u 

 

-- Consistent with GEV distribution for block maxima 
 

Y has approx. generalized Pareto (GP) dist. for large u with cdf: 

 

H(y; σu, ξ) = 1 − [1 + ξ (y / σu)]
−1/ξ 

,  y > 0 

 

σu > 0 scale parameter  (Depends on threshold u) 

  
ξ shape parameter  (Same interpretation as that of GEV dist.) 





(3) Penultimate Extreme Value Theory 

 
 
 

 Penultimate Approximations 

-- Suppose cdf F in “domain of attraction” of Gumbel type (i. e., ξ = 0) 

 
-- Still preferable in nearly all cases to use GEV as approximate 

distribution for maxima (i. e., act as if ξ ≠ 0) 

-- Expression (as function of block size n) for shape parameter ξn  

 
“Hazard rate” (or “failure rate”): 
 

hF (x) = F'(x) / [1 − F(x)] 

 
 Instantaneous rate of “failure” given “survived” until x  



 
Hazard rate 

 



-- Alternative expression:  hF (x) = −[ln(1 – F)]' (x) 

 
 One choice of shape parameter (block size n): 

  ξn =  (1/hF)' (x) |x=u(n)   

 Here u(n) is “characteristic largest value” [or (1 − 1/n)th quantile of F ] 

  u(n) = F
 −1

(1 − 1/n)      

  
  
-- Because F assumed in domain of attraction of Gumbel, 
    

    ξn → 0 as block size n → ∞ 

 
 Von Mises condition:  F is in domain of attraction of Gumbel if 

    (1/hF)' (x) → 0 as x → ∞ 



 Example:  Normal Distribution (with zero mean & unit variance) 
 
-- Fisher & Tippett (1928) proposed Weibull type of GEV as penultimate 

approximation 

 

Hazard rate:  hF(x) ≈ x,  for large x   

 
[For standard normal dist., 1 – F(x) ≈ F'(x) / x,  for large x] 
 

Characteristic largest value:   u(n) ≈ (2 ln n)
1/2

,  for large n
 

 
-- Penultimate approximation is Weibull type with 

 

ξn ≈ − 1 / (2 ln n) 

 

 For example:  ξ30 ≈ −0.15,  ξ100 ≈ −0.11  



 Example:  “Stretched Exponential” Distribution 
 
-- Traditional form of Weibull distribution (unit scale, shape parameter c) 
 

     1 – F(x) = exp(−x
 c

),  x > 0,  c > 0 

 

 Hazard rate:  hF (x) = c x
 c−1

,  x > 0
 

  

 Characteristic largest value:  u(n) = (ln n)
1/c 

 
-- Penultimate approximation has shape parameter 

 

  ξn ≈ (1 – c) / (c ln n) 

  

 (i) c > 1 implies ξn ↑ 0  as n → ∞  (i. e., Weibull type) 

 (ii) c < 1 implies ξn ↓ 0  as n → ∞  (i. e., Fréchet type) 



 Simulation experiment 
 
-- Generated observations from stretched exponential distribution with 

shape parameter c = 2/3 

 
 [Wilson & Toumi (2005): Hypothesized c = 2/3 for heavy prec.] 
 

-- Determine maximum of sequence of length n = 100 
  

 Penultimate approximation gives: ξ100 ≈ 0.11 

 

-- Fitted GEV distribution (1000 replications): 
 
Obtained estimate of ξ ≈ 0.12 





(4) Damage Functions 

 
 
 

 Relation to Economic Damage 
 

-- Relate damage L to climate variable V  

 (e. g., wind speed) 

 
 Power transformation typically assumed 

   L ∝ V
 b

,  b > 0 

(e. g., b = 3 argued on physical basis for hurricane damage as function 

of intensity) 



-- Assume stretched exponential distribution for climate variable (at least 

for upper tail) with shape parameter c 

  
Implies stretched exponential distribution for upper tail of damage with 

shape parameter:  c* = c / b 

 
-- Exploit penultimate approximation 
 
 Wind speed (measure of hurricane intensity): 
 
 Common to fit with stretched exponential distribution 

 (Typical values of c:  roughly 2 or 3) 

 
But heavy tail observed for damage  

(Could be explained by penultimate approximation) 



(5) Economic Damage Caused by Hurricanes 

 
 

 Data   
 

-- Data set for time period 1900 – 2005 
  

Pielke et al. (2008):  sciencepolicy.colorado.edu/ 

publications/special/normalized_hurricane_damages.html 

 
-- Adjusted for inflation & changes in societal vulnerability  (US$ 2005) 

 
Increased population along coast 

Increased wealth  along coast 
 

-- Exclude events with damage < $0.1 billion 



 



 



 



 Extreme High Damage 
 

-- Excess Y = L − u over high threshold u  
 

Model Y with GP distribution 
 
Log-transformed “survival function”: 

 

ln[1 – H(y; σu, ξ)] = − (1/ξ) ln[1 + ξ (y / σu)] 
 

 

-- Excess in damage over threshold u = $10 billion (26 storms) 
 

-- Estimated shape parameter ξ of GP distribution ≈ 0.44 
 

90% confidence interval (Profile likelihood):  0.07 < ξ < 1.06 



  



 Hurricane damage function 
 

-- Hurricane intensity measured by wind speed (at landfall) V 
 
 Power transformation implies log-log linearity 

 So regress ln L vs. ln V (with slope b): 

 

      Estimated b (Std. error)

 
 
    All Data   2.43  (0.33) 
 
    V > 90 kts   4.91  (1.72) 
 

-- Both estimates not inconsistent with b = 3 
 
 Note:  Nordhaus (2010) advocated b = 9 



 



 Distribution of wind speed (upper tail) 
 

-- Fit of stretched exponential (with shape parameter c) to wind speed V 
 
   
       Estimated c  (Standard error) 

 
 
    All Data   3.32   (0.21) 
 
    V > 90 kts   1.76   (0.17) 
 
  
 Consistent with typical estimate of c for wind speed (2 or 3) 
 
 



 Inferred Upper Tail of Damage 
 

-- Penultimate approximation 
 
 Need to convert threshold u to block size n  (Set n = 30 or n = 100) 

  

    c  b   ξ30   ξ100 

 
    
    3  3   0   0 

    2  3   0.15  0.11 

    3  5   0.20  0.15 

    2  5   0.44  0.33 

    3  9   0.59  0.43 

    2  9   1.03  0.76  



 Damage Function via Extreme Value Theory 

 

-- Fit GP distribution to excesses in damage 

 
 Introduce V or ln V as covariate: 
 

Express log-transformed scale parameter ln σu as linear function of V 

or ln V 

 

-- Covariate far from statistically significant 



(6) Return Levels Under Nonstationarity 

 
 

 

 Return Level Under Stationary  
 

-- “Return level” with (1/p)-yr “return period” 
 

(1 – p)th quantile of relevant cdf (say F) 

 

x(p) = F
 −1

(1 – p),  0 < p < 1 

 

(e. g., p = 0.01 corresponds to 100-yr return period) 



 



 Interpretation Under Stationarity 
 

(i) Expected waiting time (Assume temporal independence) 
  

 Waiting time W has geometric distribution: 
 

   Pr{W = k} = (1 − p)
k−1

p,   k = 1, 2, . . . 

 
 So E(W) = 1/p 
 

(ii) Length of time Tp for which expected number of events = 1  

 

1 = Expected no. events = Tp p  

 

 So Tp = 1/p 

 



 Nonstationarity 
 

-- Could use conditional quantiles 
 
 But cannot necessarily change flood plain from year to year 
 
 

 



Resources 

 
 

 

 Statistics of Weather and Climate Extremes 
 

-- www.isse.ucar.edu/extremevalues/extreme.html 
 

 Extremes Toolkit 
 
-- www.isse.ucar.edu/extremevalues/evtk.html 
 

 


