ECONOMIC IMPACT OF EXTREME CLIMATE EVENTS: IMPLICATIONS FOR UNCERTAINTY QUANTIFICATION IN RISK ANALYSIS

Rick Katz

Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA

Email: rwk@ucar.edu

Web site: www.isse.ucar.edu/staff/katz/

Talk: www.isse.ucar.edu/staff/katz/docs/pdf/samsirwk.pdf

Hurricane Andrew (1992)

PHOTO: SCOTT OLSON/GETTY IMAGES

Hurricane Irene (2011)

John Tukey:

"As I am sure almost every geophysicist knows, distributions of actual errors and fluctuations have much more straggling extreme values than would correspond to the magic bell-shaped distribution of Gauss and Laplace."

Outline

(1) Motivation

(2) Ultimate Extreme Value Theory

(3) Penultimate Extreme Value Theory

(4) Damage Functions

(5) Economic Damage Caused by Hurricanes

(6) Return Levels Under Nonstationarity

- Uncertainty Quantification
- -- Tails of distributions

Most important for impacts

- "Risk, Decisions and Impacts"
- -- SAMSI theme (erstwhile?)

"Risk of high impact, low probability events"

"Application of UQ to climate risk and decision analysis"

• Extreme Value Theory

-- Natural framework for statistical modeling of such events

- Damage Functions
- -- Convert intensity of extreme climate event to economic damage (Functional form?)
- Penultimate Approximations
- -- Refinement to Extreme Value Theory
- -- Use to relate tail behavior of damage to that of underlying climate variable

• "Ultimate" Extreme Value Theory

 X_1, X_2, \ldots, X_n independent with common cdf F

-- Suppose that there exist constants $a_n > 0$ and b_n such that

 $\Pr\{[\max(X_1, X_2, \ldots, X_n) - b_n] \mid a_n \leq x\} \rightarrow G(x) \text{ as } n \rightarrow \infty$

Then **G** must a generalized extreme value (**GEV**) cdf; that is,

 $G(x; \mu, \sigma, \xi) = \exp \{-[1 + \xi (x - \mu)/\sigma]^{-1/\xi}\}$

 μ location, $\sigma > 0$ scale, ξ shape parameter

GEV distribution

- Excesses Over High Threshold
- -- X random variable

Y = X - u "excess" over high threshold *u*, conditional on X > u

-- Consistent with GEV distribution for block maxima

Y has approx. generalized Pareto (GP) dist. for large u with cdf:

 $H(y; \sigma_u, \xi) = 1 - [1 + \xi (y / \sigma_u)]^{-1/\xi}, y > 0$

 $\sigma_u > 0$ scale parameter (Depends on threshold u)

 $\boldsymbol{\xi}$ shape parameter (Same interpretation as that of GEV dist.)

- Penultimate Approximations
- -- Suppose cdf *F* in "domain of attraction" of Gumbel type (i. e., $\xi = 0$)
- -- Still preferable in nearly all cases to use GEV as approximate distribution for maxima (i. e., act as if $\xi \neq 0$)
- -- Expression (as function of block size *n*) for shape parameter ξ_n

"Hazard rate" (or "failure rate"):

 $h_F(x) = F'(x) / [1 - F(x)]$

Instantaneous rate of "failure" given "survived" until x

Hazard rate

-- Alternative expression: $h_F(x) = -[\ln(1 - F)]'(x)$

One choice of shape parameter (block size *n*):

 $\xi_n = (1/h_F)'(x)|_{x=u(n)}$

Here u(n) is "characteristic largest value" [or (1 - 1/n)th quantile of F] $u(n) = F^{-1}(1 - 1/n)$

-- Because *F* assumed in domain of attraction of Gumbel,

 $\xi_n \rightarrow 0$ as block size $n \rightarrow \infty$

Von Mises condition: *F* is in domain of attraction of Gumbel if

 $(1/h_F)'(x) \rightarrow 0$ as $x \rightarrow \infty$

- Example: Normal Distribution (with zero mean & unit variance)
- -- Fisher & Tippett (1928) proposed Weibull type of GEV as penultimate approximation

Hazard rate: $h_F(x) \approx x$, for large x

[For standard normal dist., $1 - F(x) \approx F'(x) / x$, for large x]

Characteristic largest value: $u(n) \approx (2 \ln n)^{1/2}$, for large n

-- Penultimate approximation is Weibull type with

 $\xi_n \approx -1/(2 \ln n)$

For example: $\xi_{30} \approx -0.15$, $\xi_{100} \approx -0.11$

• Example: "Stretched Exponential" Distribution

-- Traditional form of Weibull distribution (unit scale, shape parameter c)

 $1 - F(x) = \exp(-x^{c}), x > 0, c > 0$

Hazard rate: $h_F(x) = c x^{c-1}, x > 0$

Characteristic largest value: $u(n) = (\ln n)^{1/c}$

-- Penultimate approximation has shape parameter

 $\xi_n \approx (1-c) / (c \ln n)$

(i) c > 1 implies $\xi_n \uparrow 0$ as $n \to \infty$ (i. e., Weibull type) (ii) c < 1 implies $\xi_n \downarrow 0$ as $n \to \infty$ (i. e., Fréchet type) • Simulation experiment

-- Generated observations from stretched exponential distribution with shape parameter c = 2/3

[Wilson & Toumi (2005): Hypothesized c = 2/3 for heavy prec.]

-- Determine maximum of sequence of length n = 100

Penultimate approximation gives: $\xi_{100} \approx 0.11$

-- Fitted GEV distribution (1000 replications):

Obtained estimate of $\xi \approx 0.12$

Relation to Economic Damage

-- Relate damage *L* to climate variable *V*

(e.g., wind speed)

Power transformation typically assumed

 $L \propto V^{b}, b > 0$

(e. g., b = 3 argued on physical basis for hurricane damage as function of intensity)

-- Assume stretched exponential distribution for climate variable (at least for upper tail) with shape parameter c

Implies stretched exponential distribution for upper tail of damage with shape parameter: $c^* = c / b$

-- Exploit penultimate approximation

Wind speed (measure of hurricane intensity):

Common to fit with stretched exponential distribution

(Typical values of c: roughly 2 or 3)

But heavy tail observed for damage

(Could be explained by penultimate approximation)

• Data

-- Data set for time period 1900 - 2005

Pielke et al. (2008): sciencepolicy.colorado.edu/ publications/special/normalized_hurricane_damages.html

-- Adjusted for inflation & changes in societal vulnerability (US\$ 2005)

Increased population along coast

Increased wealth along coast

-- Exclude events with damage < \$0.1 billion

Year

Log-Transformed Hurricane Damage

Normal quantiles

Year

- Extreme High Damage
- -- Excess Y = L u over high threshold u

```
Model Y with GP distribution
```

Log-transformed "survival function":

 $\ln[1 - H(y; \sigma_u, \xi)] = -(1/\xi) \ln[1 + \xi (y / \sigma_u)]$

- -- Excess in damage over threshold *u* = \$10 billion (26 storms)
- -- Estimated shape parameter ξ of GP distribution ≈ 0.44

90% confidence interval (Profile likelihood): $0.07 < \xi < 1.06$

• Hurricane damage function

-- Hurricane intensity measured by wind speed (at landfall) V

Power transformation implies log-log linearity

So regress In *L* vs. In *V* (with slope *b*):

	Estimated b	(Std. error)	
All Data	2.43	(0.33)	
V > 90 kts	4.91	(1.72)	

-- Both estimates *not* inconsistent with **b** = 3

Note: Nordhaus (2010) advocated **b** = 9

• Distribution of wind speed (upper tail)

-- Fit of stretched exponential (with shape parameter c) to wind speed V

	Estimated c	(Standard error)	
All Data	3.32	(0.21)	
V > 90 kts	1.76	(0.17)	

Consistent with typical estimate of c for wind speed (2 or 3)

- Inferred Upper Tail of Damage
- -- Penultimate approximation

Need to convert threshold *u* to block size *n* (Set n = 30 or n = 100)

С	b	§ 30	ξ 100
3	3	0	0
2	3	0.15	0.11
3	5	0.20	0.15
2	5	0.44	0.33
3	9	0.59	0.43
2	9	1.03	0.76

• Damage Function via Extreme Value Theory

-- Fit GP distribution to excesses in damage

Introduce **V** or **In V** as covariate:

Express log-transformed scale parameter $\ln \sigma_u$ as linear function of V or $\ln V$

-- Covariate far from statistically significant

- Return Level Under Stationary
- -- "Return level" with (1/p)-yr "return period"

(1 – p)th quantile of relevant cdf (say F)

 $x(p) = F^{-1}(1-p), 0$

(e. g., p = 0.01 corresponds to 100-yr return period)

• Interpretation Under Stationarity

(i) Expected waiting time (Assume temporal independence)

Waiting time **W** has geometric distribution:

 $\Pr\{W = k\} = (1 - p)^{k-1}p, \ k = 1, 2, \dots$

So *E*(*W*) = 1/*p*

(ii) Length of time T_p for which expected number of events = 1

1 = Expected no. events = $T_p p$ So $T_p = 1/p$

- Nonstationarity
- -- Could use conditional quantiles

But cannot necessarily change flood plain from year to year

- Statistics of Weather and Climate Extremes
- -- www.isse.ucar.edu/extremevalues/extreme.html
- Extremes Toolkit
- -- www.isse.ucar.edu/extremevalues/evtk.html